DNA Methylation Affects the Efficiency of Transcription Activator-Like Effector Nucleases-Mediated Genome Editing in Rice
نویسندگان
چکیده
Genome editing in plants becomes popular since the advent of sequence-specific nucleases (SSNs) that are simple to set up and efficient in various plant species. Although transcription activator-like effector nucleases (TALENs) are one of the most prevalent SSNs and have a potential to provide higher target specificity by their dimeric property, TALENs are sensitive to methylated cytosines that are present not only in transposons but also in active genes in plants. In mammalian cells, the methylation sensitivity of TALENs could be overcome by using a base-recognition module (N∗) that has a higher affinity to methylated cytosine. In contrast to mammals, plants carry DNA methylation at all cytosine contexts (CG, CHG, and CHH, where H represents A, C, or T) with various degrees and effectiveness of N∗ module in genome editing in plants has not been explored. In this study, we designed sets of TALENs with or without N∗ modules and examined their efficiency in genome editing of methylated regions in rice. Although improvement in genome editing efficiency was observed with N∗-TALENs designed to a stably methylated target, another target carrying cytosines with various levels of methylation showed resistance to both normal and N∗-TALENs. The results suggest that variability of cytosine methylation in target regions is an additional factor affecting the genome editing efficiency of TALENs.
منابع مشابه
Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing.
Transcription activator-like effector (TALE) nucleases (TALENs) have recently emerged as a revolutionary genome editing tool in many different organisms and cell types. The site-specific chromosomal double-strand breaks introduced by TALENs significantly increase the efficiency of genomic modification. The modular nature of the TALE central repeat domains enables researchers to tailor DNA recog...
متن کاملGenome Editing in Human Pluripotent Stem Cells.
Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically u...
متن کاملGenome Editing in Sugarcane: Challenges Ahead
Genome editing opens new and unique opportunities for researchers to enhance crop production. Until 2013, the zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) were the key tools used for genome editing applications. The advent of RNA-guided engineered nucleases - the type II clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 (CRISPR-a...
متن کاملSite-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas...
متن کاملBacterial Delivery of TALEN Proteins for Human Genome Editing
Transcription Activator-Like Effector Nucleases (TALENs) are a novel class of sequence-specific nucleases that have recently gained prominence for its ease of production and high efficiency in genome editing. A TALEN pair recognizes specific DNA sequences and introduce double-strand break in the target site, triggering non-homologous end joining and homologous recombination. Current methods of ...
متن کامل